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ABSTRACT
Users typically interact with a device through direct contact
or with a remote controller. However, these interfaces do
not provide an intuitive, natural experience for the user. In
this work, we attempt to identify static gestures in real-time
to provide users with a more natural user interface. We
created a wearable device containing a VPU and transducer
in contact with the user’s wrist. The transducer sends out
ultrasonic waves through a function generator. The waves
go through the user’s hand and are received by the VPU as
a reflection. Different gestures yield different reflections.
We used this difference to train the data collected by the
VPU on an offline machine learning algorithm and
imported the final model into T4Train [1], a real-time
machine learning software. Using T4Train, we were able to
recognize three different gestures (open hand, closed hand,
and two finger “ok” sign) in real-time. Limitations of this
gesture recognition were the need to train a model specific
to each user and the need to maintain identical training and
testing conditions. Future work to address these limitations
includes training a model on a larger number of samples
collected under diverse conditions and improving real-time
prediction speed by reducing the duration of each sample.
With these improvements, static gestures may be a valuable
addition to the interfaces used to control presentations, play
and pause media, play games, and more.

INTRODUCTION
Gestures are widely used for communication in the real
world. More than 70 million people worldwide use sign
language. This project was first motivated by the idea of
interpreting ASL to eliminate the barrier between those who
use ASL and those who do not. There are more than 4500
ASL sign gestures. It was not feasible to identify this large
number of gestures in 1 month, so we investigated
applications requiring fewer gestures.

The traditional user interface, including components like the
keyboard, mouse, touch screen, or remote controller,
requires physical interaction and cannot be customized for
individuals. Current user interfaces are not intuitive, and
this poses a barrier for people who are not familiar with
technology. Moreover, due to the inability to provide
customized interaction between users and the device,
current interfaces also pose difficulties for people with
disabilities. Our project aims to provide a more intuitive
way to interact with one’s device, such as controlling slides
with closed-hand and open-hand gestures, scrolling an
article with a thump-up or thumb-down, and
picking/hanging up a call with crossed fingers. Through
static hand gesture recognition, users can customize their

experience by choosing gestures that are the easiest to
perform based on their backgrounds.

RELATED WORK
We learned from multiple existing works as we worked on
this project, namely Echowrist [2], SAWSense [3], and
Interferi [4].

Echowrist estimates hand pose and hand-object interaction
with a microphone and speaker placed on each side of the
wrist. Because they have a microphone and speaker on each
side of the wrist, they can calculate the difference between
transmitted and received acoustic data. Their machine
learning model is also trained on this difference. However,
because they are using a microphone, which is sensitive to
background noise, their application is limited to quiet
locations.

SAWSense uses a Voice Pick Up (VPU) sensor to collect
surface acoustic waves (SAWs) generated when the user’s
hand engages in touch-based activities. The authors then
trained a machine learning model which was able to
recognize user interaction with daily objects. Specifically,
the authors were able to classify gesture inputs (like
dragging a finger over a desk or tapping on the desk) and
conduct activity recognition (like whisking in a bowl versus
chopping food on a cutting board).

Finally, Interferi tracks hand and face movement with
transducers emitting and receiving acoustic signals. By
utilizing multiple transducers, the authors were able to do
continuous tracking of the hand, wrist angle, and smile
intensity of a person’s face.

Our project combines hardware from SAWSense and
Interferi in that we use both a VPU and transducer. As
SAWSense is only using a VPU, the application is limited
to dynamic gestures that make sounds (or more specifically,
activities that produce SAWs). By using one VPU and one
transmitting transducer (see Figure 2), which is less
hardware than used in Interferi, our project is able to
recognize static gestures (gestures that hold state and are
not necessarily emitting SAWs). Compared to Echowrist,
our project uses a VPU, which is less sensitive to
environmental noise than a traditional microphone,
allowing for a wider range of applications than Echowrist.
However, since Echowrist uses signal receiving and
transmitting devices on both sides of the wrist, it has more
distinguishable data of signals going through different
gestures. A future extension of this work inspired by
Echowrist could address this issue by placing one VPU on
each side of the wrist, one measuring transmitted signal and
one measuring the received signal.



SYSTEM OVERVIEW
Our approach consisted of three main parts: Hardware,
Offline Machine Learning, and Real Time Machine
Learning.

Hardware Overview

We use a transducer (with a bandwidth of 25khz +/- 2) with
a Voice Pickup Unit to capture Surface Acoustic Waves.
The transducer and the VPU are both placed in direct
contact with the skin. This allows the transducer to produce
SAWs which are then picked up by the VPU. The
transducer is driven using a function generator with a
frequency sweep from 23 to 27 kHz with a period of 0.1s
carrying a square wave at 20 Volts Peak-to-Peak and 10%
duty cycle. We decided on this waveform through empirical
testing with different factorizations. This waveform showed
promise with visually distinguishable FFT features and high
accuracy on test data for our machine learning models.

We utilized a VPU over a standard microphone because it is
not as susceptible to environmental noise compared to a
traditional microphone. An ESP32s3, is powered by a
portable USB charger, is used to read data from the VPU
using an wired I2S communication protocol and that data is
streamed to the laptop using Wifi. We use another ESP32 to
create a private Wifi network, allowing both the laptop and
the ESP32s3 to send and receive data when connected to the
private Wifi.

Figure 1: Custom 3D Printed housings for VPU & Transducer

In order to secure the VPU and transducer to a human wrist
using velcro straps, we designed and 3D printed custom
mounts for the VPU and transducer (see Figure 1). They
include loops (slits on the sides) to adjust the size of the
velcro strap, creating a one-size-fits-all wearable that can be
used on anyone's wrist. Edges for the strap were rounded to
allow the strap to be adjusted quickly and to minimize
discomfort to the user from any sharp edges.

  

Figure 2: Our VPU (top) and transducer (bottom right)
attached to the underside of the wrist as a wearable

Our current setup includes two separate wrist wearables
(see Figure 2). This allowed us to increase the distance
between the VPU and the transducer and resulted in more
distinguishable data per gesture.

Offline Machine Learning Overview

We initially used a 200 millisecond pulse and MFCC
featurization to train a ML model. This setup performed
very poorly, rarely exceeding 50% training and testing
accuracy. To address this low accuracy, we experimented
with both the underlying signal and featurization method.

In our final model, as stated previously, we drove the
transducer using a frequency sweep from 23 to 27 kHz with
a period of 0.1s carrying a square wave at 20 Vpp and 10%
duty cycle.

Using this signal and the data that the VPU collected, we
featurized the data using a Fast Fourier Transform (FFT).
We then trained on a number of models and compared
accuracies to identify the best model to use in the real time
detection. Nearly all of the models exhibited greater than
97% accuracy on training data.

There is actually a specific reason for using FFT
featurization. When doing experiments, we could clearly
see that there were distinct but constant FFT featurization
states that corresponded to a specific gesture state. In other
words, we could visually verify that a given static gesture
directly corresponds to a unique FFT output that holds
steady over time. We knew these FFTs were unique for each
gesture as the maximum magnitude within the FFT was
different for each gesture (but of course, the FFT output
would remain relatively the same for a particular gesture as



time went on, even when we switched between different
static gestures). This also proves that our model was not
learning off of random noise, since when we turned off the
function generator, the FFT output was not steady or
constant but rather continuously changing. Moreover, since
we could visually differentiate between different gestures
based on the FFT output, it makes sense that machine
learning is doing exceptionally well during training.

Real Time Machine Learning Overview

Once we obtained high accuracy offline results, we
transformed these offline machine learning models into real
time models. To this end, a program called T4Train was
repurposed. T4Train is a program which was specifically
designed for real time machine learning and abstracts away
the challenges of real time inferencing (classification). This
program was then adapted to remove bugs, retrieve VPU
data via Wifi, and utilize our pre-trained models from
offline training. The inference speed is dependent on the
number of frames (amount of data) that is collected before a
prediction will be made. The amount of data that is
collected before a prediction is the same amount of data we
used when collecting training data. That is, if we collected
0.5 seconds samples of training data, then we would also
collect 0.5 seconds of data before making a real time
prediction. There is a potential tradeoff between inference
speed and accuracy. Increasing the inference speed could
mean less data will be collected before making a prediction.
Thus, the model may give an incorrect prediction before
arriving at the correct prediction. Future work can consider
how to increase inference speed by further analyzing static
gestures and how changing from one static gesture to
another static gesture can affect data collection and
inference.

STUDY DESIGN
We used three gestures for testing: open, closed, and two
finger, shown in Figure 3. In order to obtain the best
results, participants were tested with custom fit models.
That is, they had to first train our machine learning model
before we conducted testing soon after.

Figure 3: Closed, open, & two finger gestures

For each participant, we recorded at least 20 samples
(around 0.5 second recording per sample) for each gesture.

This data was specific to the participant – the data collected
was with the wearable VPU (sampling at 96 kHz) and
transducer on their wrist. We then trained a model using the
data collected for that participant. The trained model was
then uploaded to T4Train and used to classify gestures in
real time during testing.

We tested the performance of each participant’s model by
telling the participant to form a gesture and recording the
prediction shown in T4Train. We then evaluated whether
the prediction was correct. Each participant was given 10
gesture cues. 5 users participated in the study.

Training and testing were done under identical conditions.
The participant held their arm in the same position and
remained sitting in the same spot between training and
testing. Additionally, participants could provide any
optional feedback they had regarding the user experience.

RESULTS
After testing with 5 participants over a total of 50 real-time
trials, we obtained the following confusion matrix (Figure
4).

Figure 4: User study confusion matrix

Open was the most accurate gesture with 100% accuracy.
Two finger and closed were occasionally confused, with
11% of two finger gestures misidentified as closed and 7%
of closed gestures misidentified as two finger.

For real time predictions, we used the Support Vector
Classifier (SVC) model as it produced at least 98% offline
training accuracy in identifying the three gestures for each
participant.

During testing, we observed a small delay between forming
a gesture and seeing the correct prediction. In the future,
this might be corrected by reducing the duration of training
and testing samples (currently set at 0.5 seconds per



sample). Further testing is needed to see if reducing the
sample duration will affect model accuracy.

In terms of participant feedback on the user experience, one
participant stated she really liked the 3D housings for the
VPU and transducer because they felt comfortable. Another
person felt that the ideal positioning of the VPU and the
transducer was too picky or sensitive to minor changes.

During training and testing, we analyzed FFTs for each user
to ensure we could distinguish between gestures. For two
random users, the FFT outputs for each sample are graphed
below (thicker line means overlap between samples and
thinner line means less overlap). Different gestures
appeared to create the same shapes among different users,
but the main FFT features (within the 20 to 40 kHz band)
had different magnitude levels for different users (see
Figure 5). Within each user, we can see that the gap or
difference in magnitude of the two finger gesture compared
to either the closed or open gesture is relatively small. On
the other hand, the magnitude difference is quite large and
apparent between open and closed gestures. This can
explain why the real time model had some difficulties
predicting between two finger and closed/open gestures
versus open gesture and closed gesture.

It’s also important to note three gestures produced a unique
set of FFT features for only one specific user, which means
we must retrain for each specific user. Also, the real time
accuracies are lower than the offline model accuracies.
Perhaps the offline models are overfitting (since we are
obtaining extremely high training accuracies) and thus are
not classifying as well as they could in real time. Future
work can investigate increasing real time accuracy by
applying regularization techniques to offline models to
decrease model overfitting and/or find better ways to
increase the gaps between each gesture’s respective FFT
output features (making it easier for real time classification
to predict correctly).

Figure 5: Sample FFTs for two users

CONCLUSION
In this project, we aimed to provide a more intuitive, natural
way to interact with devices using real-time static gesture
recognition. Our wearable final product consisting of a
VPU, transducer, and ESP32 is portable, lightweight, and
not impacted by environmental noise. We achieved high test
accuracy offline using FFT featurization and an SVC
model. Transforming this model into real-time classification
proved more challenging, but we were able to identify open
gestures with accuracy 100%, closed gestures with accuracy
89%, and two finger gestures with accuracy 73% during a
50-trial test with 5 users.

There are several limitations of our final product. First, to
get the best accuracy, a user must use a model trained
specifically for them. More training data needs to be
collected in the future from a larger number of people and
under different conditions to create a more robust model.
Second, these models are very sensitive to placement of the
VPU and transducer wristbands. Again, collecting more
training data can resolve this issue. Third, real-time
prediction speed is somewhat slow. Reducing the sample
duration may improve real-time prediction speed, but may
also decrease model accuracy. Fourth, since we only used
one VPU and transducer, adding an additional VPU or
transducer can provide more data and yield better
classification accuracy. Finally, there is room for
improvement on machine learning and featurization
methods. We can continue to experiment with different
underlying signals from the function generator, machine
learning models, and featurization methods to improve
prediction accuracy and expand the number of gestures we
can identify with high accuracy.
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